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Heme oxygenase (HO) catalyzes theadd NADPH/cytochrome 10§
P450 reductase-dependent conversion of heme to biliverdin, free
iron ion, and CO through a process in which the heme participates
as both dioxygen-activating prosthetic group and substrilte.
confirmed recent§? that the first step of HO catalysis is a
monooxygenation in which the addition of one electron and two
protons to the HO oxy-ferroheme produces fetricaesehydroxy-
heme f). We did so through the use of cryoreduction/EPR and 06 1

n.a A

ENDOR spectroscopies to characterize enzymic intermediates. Oxy- £
HO, whose distal-pocket proton-delivery netwbik modeled by 2
Scheme 1, was subjected to one-electron 77 K radiolytic reduction
and subsequent annealing at 208K? This generates a structurally o4
relaxed hydroperoxo-ferri-HO speci¥sdenotedR.
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O.. /0' Figure 1. Inset: 77 K X-band EPR spectra BfR1 intermediates of HO
o/ T H in H20 buffer during stepwise annealing at 215 K. Figure: Relative peak-
| trough heights ofy, feature ofR/R1 spectra for HO in HO (®) and D,O
—— - e— (black @) buffers, and for HO (hemeeseD) in H,O buffer (red®).

We found that during annealing steps at 214 K, intermedate hydroperoxoferri-HO, along with a minority form that is unreactive
converts in a single kinetic step to the high-spin, five-coordinate (Or slowly reactive) at this temperaturY; g ~ [2.393, 2.188,
product,h, without formation of a Compound®However, there ~ 1.917))2 Figure 1 (inset) shows EPR signalsRR1 (hememeso-
has been no detailed information about this rate-limiting step, neither H) in HzO buffer taken during annealing at 215°k? Figure 1
about the actual O-atom transfer nor about the delivery of the secondPlots the time course of this reaction, overlaid with the fit to an
proton, assumed to activate the hydroperoxo group for reaction. €xponential decay) = a + blexp(-t/7)].** The reactiveR
We here report this information, acquired through the cryoreduction/ component, wittb = 80% of the signal, decays with a half-time
annealing experiments thdirectly measure the solvent (solv) and ~ ©f 7= 2.0(1) min.
secondary (sec) kinetic isotope effects (KIEs) of tRe— h Does this rate-limiting step fdR — h conversion involve bond
conversion in enzyme prepared ia®D,0 buffers and wittmese formation between the-mesecarbon and the terminal hydroper-
deuterated heme. This approach is unique in that KIEs are measure@®X0-oxygen? If the transition state for this conversion does involves
by monitoring the rate-limiting step directly and are not susceptible ©—C bond formation, and the associateetO bond cleavage, then
to masking by KIEs of other processes. This report thus presentsthe associated rehybridization of the hemenesecarbon should
the first direct measurement of the KIEs of product formation by introduce a secondary KIE (sec-KIE) upon deuteration of this heme

a kinetically competent reaction intermediate any dioxygen- position:®7Indeed, the decay @t for oxy-ferrous-HO (heme.-D;
activating heme enzynig:12 Figure 1) isfasterthan that for the enzyme with-H heme,z(o-
Oxyferrous human HO was prepared iaGHand DO buffers, D) = 1.3 min, giving aninversesecondary isotope effect at 215K,

and oxyferrous-HO (hemmeseD)!3 was prepared in 0 bufferl sec-KIEQ@-D) = ki/ko = 7(a-D)/z(a-H) = 0.7(2). Using the
Cryoreductio”8 of oxyferrous-HO at 77 K and annealing to 200 €xponential dependence of a sec-KIE on inverse temperature, this
K produces the reactive fornR( g = [2.37, 2.180, 1.917]) of the  Ccorresponds to sec-KIE(298 k) 0.8(1). The sense (inverse) and
magnitude of this value agrees with expectati&h&for rehybrid-
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Is this process activated by delivery of the “second” proton of
catalysis? Th& — h conversion in fact is markedly slowed when
oxyferrous-HO is prepared in® buffer (Figure 1),7(D,0) =
4.7 min, giving a kinetic solvent isotope effect, solv-KIE(215 K)
= 7(D,0)/t(H,0) = 2.318 Using the exponential dependence of a
solv-KIE on inverse temperatutg?°the value of 215 K is found
to correspond to solv-KIE(298 K¥ 1.8.

The solv-KIE(298 K) for a reaction can be estimated from eq 1,

react react. o] o

[14 (T19

+ prod.
e \[1¢
where the ¢ are H/D fractionation factors for the solvent-
exchangeable protons, with* being the value for the “in-flight”

(if) proton being transferred, ari¢th, Kp the equilibrium constants
for the reaction in HO and BO; the parameted expresses the
location of the transition state (TS) on the reaction coordinate, with
values between 0 (reactant-like TS) and 1 (product-iké}.22

The spontaneous reaction of the hydroperoxo oxygen with the
o-mesocarbon would have solv-KIE= 1, while the reaction of an
already-activated, protonated hydroperoxo would have an inverse
effect (solv-KIE(298 K)= 0.69); the experiment thus rules out
both processes. Instead, it appears that the rate-limiting stép for
— h conversion must involve not only -©C bond formation but
proton delivery to the Fe-OOH moiety as well. Proton transfer
from an HO or H;O* of the distal H-bond network would give
solv-KIE values that are too large for the former donor (9as
1 ((2.52%)) and too small for the latter (1.2, ds— 1 (2.5/2.2)).
However, a carboxyl donor acting as a general acid catalyst,
presumably Asp 140 with intervening water(s) (see Scheme 1) (or
other donor with one exchangeable proton), would give solv-KIE-
(298 K) = 2.5, in satisfactory accord with experiment.

The observation diothsec-KIE and solv-KIE indicates that the
rate-limiting step for formation of five-coordinate, high-spin, ferric-
o-mesehydroxyhemelf) by HO is the concerted process of Scheme
2 (where arrows imply nuclear motions): activation by proton
transfer to the hydroperoxo-ferri-heme through the distal-pocket
H-bond network (Scheme 1), likely from a carboxyl group acting
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of H,O then generateh. Such behavior is consonant with
theoretical predictiorts=2> of facile O—-O bond breakage upon
proton activation. This approach will be applied to other heme
monoxygenase&? as well.
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