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Heme oxygenase (HO) catalyzes the O2 and NADPH/cytochrome
P450 reductase-dependent conversion of heme to biliverdin, free
iron ion, and CO through a process in which the heme participates
as both dioxygen-activating prosthetic group and substrate.1 We
confirmed recently2,3 that the first step of HO catalysis is a
monooxygenation in which the addition of one electron and two
protons to the HO oxy-ferroheme produces ferric-R-meso-hydroxy-
heme (h). We did so through the use of cryoreduction/EPR and
ENDOR spectroscopies to characterize enzymic intermediates. Oxy-
HO, whose distal-pocket proton-delivery network4 is modeled by
Scheme 1, was subjected to one-electron 77 K radiolytic reduction
and subsequent annealing at 200 K.3,7-9 This generates a structurally
relaxed hydroperoxo-ferri-HO species,10 denotedR.

We found that during annealing steps at 214 K, intermediateR
converts in a single kinetic step to the high-spin, five-coordinate
product,h, without formation of a Compound I.3 However, there
has been no detailed information about this rate-limiting step, neither
about the actual O-atom transfer nor about the delivery of the second
proton, assumed to activate the hydroperoxo group for reaction.
We here report this information, acquired through the cryoreduction/
annealing experiments thatdirectly measure the solvent (solv) and
secondary (sec) kinetic isotope effects (KIEs) of theR f h
conversion in enzyme prepared in H2O/D2O buffers and withmeso-
deuterated heme. This approach is unique in that KIEs are measured
by monitoring the rate-limiting step directly and are not susceptible
to masking by KIEs of other processes. This report thus presents
the first direct measurement of the KIEs of product formation by
a kinetically competent reaction intermediate inany dioxygen-
activating heme enzyme.11,12

Oxyferrous human HO was prepared in H2O and D2O buffers,
and oxyferrous-HO (hememeso-D)13 was prepared in H2O buffer.14

Cryoreduction3,7,8 of oxyferrous-HO at 77 K and annealing to 200
K produces the reactive form (R; g ) [2.37, 2.180, 1.917]) of the

hydroperoxoferri-HO, along with a minority form that is unreactive
(or slowly reactive) at this temperature (R1; g ≈ [2.393, 2.188,
1.917]).3 Figure 1 (inset) shows EPR signals ofR/R1 (hememeso-
H) in H2O buffer taken during annealing at 215 K.3,14 Figure 1
plots the time course of this reaction, overlaid with the fit to an
exponential decay,I ) a + b[exp(-t/τ)].15 The reactiveR
component, withb ) 80% of the signal, decays with a half-time
of τ ) 2.0(1) min.

Does this rate-limiting step forR f h conversion involve bond
formation between theR-meso-carbon and the terminal hydroper-
oxo-oxygen? If the transition state for this conversion does involves
O-C bond formation, and the associated O-O bond cleavage, then
the associated rehybridization of the hemeR-meso-carbon should
introduce a secondary KIE (sec-KIE) upon deuteration of this heme
position.16,17Indeed, the decay ofR for oxy-ferrous-HO (hemeR-D;
Figure 1) isfaster than that for the enzyme withR-H heme,τ(R-
D) ) 1.3 min, giving aninVersesecondary isotope effect at 215K,
sec-KIE(R-D) ) kH/kD ) τ(R-D)/τ(R-H) ) 0.7(2). Using the
exponential dependence of a sec-KIE on inverse temperature, this
corresponds to sec-KIE(298 K)) 0.8(1). The sense (inverse) and
magnitude of this value agrees with expectations16,17 for rehybrid-
ization of the trigonal (sp2) hemeR-mesocarbon as it becomes a
tetrahedral (sp3) hydroxylated intermediate during reaction with the
terminal O.
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Scheme 1

Figure 1. Inset: 77 K X-band EPR spectra ofR/R1 intermediates of HO
in H2O buffer during stepwise annealing at 215 K. Figure: Relative peak-
trough heights ofg2 feature ofR/R1 spectra for HO in H2O ([) and D2O
(black b) buffers, and for HO (hememeso-D) in H2O buffer (redb).
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Is this process activated by delivery of the “second” proton of
catalysis? TheR f h conversion in fact is markedly slowed when
oxyferrous-HO is prepared in D2O buffer (Figure 1),τ(D2O) )
4.7 min, giving a kinetic solvent isotope effect, solv-KIE(215 K)
) τ(D2O)/τ(H2O) ) 2.3.18 Using the exponential dependence of a
solv-KIE on inverse temperature,19,20 the value of 215 K is found
to correspond to solv-KIE(298 K)) 1.8.

The solv-KIE(298 K) for a reaction can be estimated from eq 1,

where the æ are H/D fractionation factors for the solvent-
exchangeable protons, withæif

q being the value for the “in-flight”
(if) proton being transferred, andKH, KD the equilibrium constants
for the reaction in H2O and D2O; the parameterδ expresses the
location of the transition state (TS) on the reaction coordinate, with
values between 0 (reactant-like TS) and 1 (product-like).17,20,21

The spontaneous reaction of the hydroperoxo oxygen with the
R-mesocarbon would have solv-KIE) 1, while the reaction of an
already-activated, protonated hydroperoxo would have an inverse
effect (solv-KIE(298 K)) 0.69δ); the experiment thus rules out
both processes. Instead, it appears that the rate-limiting step forR
f h conversion must involve not only O-C bond formation but
proton delivery to the Fe3+-OOH moiety as well. Proton transfer
from an H2O or H3O+ of the distal H-bond network would give
solv-KIE values that are too large for the former donor (5 asδ f
1 ((2.5‚2δ)) and too small for the latter (1.2, asδ f 1 (2.5/2.1δ)).
However, a carboxyl donor acting as a general acid catalyst,
presumably Asp 140 with intervening water(s) (see Scheme 1) (or
other donor with one exchangeable proton), would give solv-KIE-
(298 K) ) 2.5, in satisfactory accord with experiment.

The observation ofbothsec-KIE and solv-KIE indicates that the
rate-limiting step for formation of five-coordinate, high-spin, ferric-
R-meso-hydroxyheme (h) by HO is the concerted process of Scheme
2 (where arrows imply nuclear motions): activation by proton
transfer to the hydroperoxo-ferri-heme through the distal-pocket
H-bond network (Scheme 1), likely from a carboxyl group acting
as a general acid catalyst, and synchronous bond formation between
the distal O and theR-meso carbon, leading to a tetrahedral
hydroxylated-heme intermediate. Subsequent rearrangement and loss

of H2O then generatesh. Such behavior is consonant with
theoretical predictions22-25 of facile O-O bond breakage upon
proton activation. This approach will be applied to other heme
monoxygenases,7,8 as well.
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